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2-CYANO A® PIPERIDEINES VIII! : BIOMIMETIC APPROACH TO THE
SYNTHESIS OF THE DECAHYDROQUINOLINE RING SYSTEM OF POISON-DART FROG TOXINS
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Institut de Chimie des Substances Naturelles du CNRS
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Summary : A biomimetic approach towards the synthesis of pumiliotoxin C has been developed.
The key transformatlon of enam1ne equivalent 8 to 9 was catalyzed by contact with

decahydroquinoline 1l or stereoselectively to the cis compound 12.

Recent and intense interest has been directed towards the total synthesis of the
poison-dart frog toxins pumiliotoxin-C® 1 and gephyrotoxin 2 due to their interesting phar-
macological activities". Both compounds 1 and 2 possess a cis~decahydroquinoline ring system
with side chain substituents at the C-2 amd C-5 pos1t10n55 (the C-2 side chain of 2 being
further attached at nitrogen, forming a third ring). The relative configurations of these
substituents are not the same, however, with the consequence that the two natural compounds
adopt opposite cis—fused conformations (conformations A and B)®. Any synthesis of these
toxins has to take into account these structural features.

It has been proposed that the pumiliotoxin class and gephyrotoxxn are formed
biosynthetically by cyclization of a substituted piperidine enamine such as 3 (scheme n’.
However, to our knowledge, no biomimetic approach to their synthesis has been reported,
presumably due to the challenging problem of controlling the stereochemistry of the C-5, 9
and 10 centers during reduction of the essentially planar conjugated imine intermediate 4.
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Our experience with the chemistry of 2—cyano-A piperideinese' suggested that an
aminonitrile equivalent 8 of the enamine precursor 3 could be readily prepared (scheme 2}.
We were thus tempted to ‘examine the cyclization of 8 with the objective of developing a

1493



1494

convenient entry to the pumiliotoxin class of frog toxins. Our preliminary results are
presented in this communication.

2-cyano A® piperideine 5 (a 3:2 mixture of epimers) was prepared from the corres-
ponding pyridinium salt according to our procedure®. A single product 6!° (Y = 85 7) was
obtained on selective hydrogenation (Pd/C, Hy, EtOH) of the A% * double bond of 5°.
Preparation of the anion of 6 (LDA, THF, - 30°) and its reaction with 5-chloro-2-pentanone
ethylene ketal at room temperature led to the formation of 7 (Y = 55 Z). Subsequent
liberation of the ketone functionality (HC1/MeOH, rt, Y =~ 98 7) gave the desired enamine
equivalent 8§ o,
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Reagents : I, Hp, C/Pd 10 %, EtOH, 12h ; II, LDA, THF, - 30°, Cl(CH2)3 ’C\—CH3, rt, 1.5h ;
ITI : MeOH-HC1 N (50:50), rt, lh ; IV : A1203 act. II-IIT, 99 CH,Cly, rt,
In ; V : NaBH,, CH3OH, rt, 20h or NaBH3¢N, THF - HYpH4, rt, 2h ; VI, NH3;Na, THF,
- 78°, Ih ; VII, Hp, C/Pd 10 %, MeOH, H', 12 h.

SCHEME 2

An efficient method for the cyclization of 8 was discovered when the crude product
mixture from the ketal hydrolysis was column chromatographed on alumina'? . On contact of 8
with alumina (Merck, Art. 1097) elimination of CN™, cyclization, dehydration and, finally,
1,4-reintroduction of CN~ onto the resultant conjugated iminium 15 occurred successively,
giving the cyano enamine 9 13 as a mixture of two epimers (9 : 1) in > 75 % yield (scheme 3).
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The major isomer, isolated pure after further chromatography was used in all sub-
sequent experiments. The gross structure of this compound was deduced from the spectral data.
However the configuration at C~5 was assigned on the basis of stereoelectronic arguments, ie.
a¥i?1 attack of CN” on the conjugated iminium 15 whose C-2 propyl side chain is axial due to
A" © gtrain.

The stable cyanoenamine 9 can be considered as a y-aminonitrile equivalent of the
proposed biogenetic intermediate 4. To complete the synthesis of the cis-decahydroquinoline
system of 1 from this key intermediate it thus remained to control the reduction of the A%!®
enamine double bond and the reductive removal of the cyano group (cleavage of the N-benzyl

group being a trivial operation).

We first investigated borohydride reduction of the enamine system. Reaction of 9
with NaBH; in MeOH led to the formation of two inseparable isomeric products (Y = 97 Z) in
a 85 : 15 ratio as determined by measuring peak heights in the 13¢ NMr spectrum. The same
two products were also obtained using NaBH,CN in THF/HCl at pH 4.0, however the reaction
was less selective (Y = 75 % : 45/55). The subsequent reaction of these mixtures with sodium
in NH3 lig. at - 78° for lh. produced the two corresponding decyano products in nearly
quantitative yield without altering the isomer ratio. Finally, hydrogenolytic cleavage of the
N-benzyl group (Pd/C, H,, MeOH-HC1) then gave the two decahydroquinolines 11 and 12 which
were readi%y separated y preparative layer chromatography on alumina (CHZCIZ/MeOH 27
(Y = 85 %)™,

TLC and GC (20 Z SE-30, 3 m, 185°/2 atm., Np) comparlson of products 11 and 12
with an authentic sample of pum1110tox1n—C showed that they were isomeric with the natural
material.

The major component from NaBH, reduction of 9 corresponds to structure 12 where
the cis fused ring adopts the conformation B so as to place both side chains in equatorial
pos1t10ns. The cis nature of the ring Junctlon was deduced from the characteristic position
for theH-2 (§2.69) and H-9 (§2.84) signals in the Tg wMr spectrumls, and from the large
J9 8ax = 12 Hz coupling constant. The large coupling constant J5,6ax = 12 Hz was consistent
with an equatorial orientation of the C-5 methyl group aswerethe 13¢ NMR signals for an
equatorial orientation of the C-2 propyl side chain.

was based upon the comparison of its '°C NMR spectrum with published values'®

It is important to note that the relative configurations of the methyl and propyl
side chains of 11 and 12 are different. This we believe is a result of an isomerization of
the C-5 center during decyanation of the intermediate leading to 1l (to be discussed in more
detail later).

In a different approach, the cyclized cyanoenamine 9 was treated directly with
Na/NH3 liq. (lh, -78° ) Vinylogous B-elimination of the benzyl group and reduction of the
resultant conjugated imine 4 occurred on reductive decyanation leading in a single operatlon

to the trans product 11 in high yield ( 3 75 Z). Also catalytic hydrogenation of the A%!?
double bond of 9 was studied. At atmospherlc pressure (Pd/C, Ru/Aly03) catalysts) the steri-
cally crowded double bond was unreactive, and at higher pressures concomitant reduction of

the nitrile group was observed.

In summary , the conversion of 8 to the cyclized aminonitrile 9 catalyzed bycontact
with alumina mimics very effectively the proposed b1osynthet1c transformation of enamine 3
to the conjugated imine 4. This key intermediate was in a short and high yielding fashion,
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natural products), and stereoselectively (85 : 13) to the cis . compound lg_possess1ng both
the correct ring conformation and C-2 side chain configuration of gephyrotoxin 2.
Pumiliotoxin-C | was not obtained using the methods studied for reduction of 23_However,
these results will serve as a guideline to further and hopefully successful experimentation
towards this natural system.
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