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Summary : A biomimetic approach towards the synthesis of pumiliotoxin C has been developed. 
The key transformation of enamine equivalent 8 to 2 was catalyzed by contact with 
alumina. Cyclized intermediate 2 was then reduced stereospecifically to the trans ----- 
decahydroquinoline 11 or stereoselectively to the cis compound 12. - _-- - 

Recent and intense interest has been directed towards the total synthesis of the 
poison-dart frog toxin; pumiliotoxin-C2 1 and gephyrotoxin 23 due to their interesting phar- 
macological activities . Both compounds T and 2 possess a c%-decahydroquinoline ring system 
with side chain substituents at the C-2 and C-3 positions 5-TFhe C-2 side chain of 2 being 
further attached at nitrogen, forming a third ring). The relative configurations 07 these 
substituents are not the same, however, with the consequence that the two natural compounds 
adqp_topposite cis-fused conformations (conformations A and B)6. Any synthesis of these --- 
toxins has to take into account these structural features. 

It has been proposed that the pumiliotoxin class and gephyrotoxin are formed 
biosynthetically by cyclization of a substituted piperidine enamine such as 2 (scheme 1)7. 
However, to our knowledge, no biomimetic approach to their synthesis has been reported, 
presumably due to the challenging problem of controlling the stereochemistry of the C-5, 9 
and 10 centers during reduction of the essentially planar conjugated imine intermediate 4. - 

Pumiliotoxin C 
(conformation A ) 

2: Gephyrotoxin 
(conformation 6 ) 

Our experience with the chemistry of 2-cyano-A3 piperideines*tg suggested that an 
aminonitrile equivalent 5 of the enamine precursor 2 could be readily prepared (scheme 2). 
We were thus tempted to examine the cyclization of fi with the objective of developing a 
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convenient entry to the pumiliotoxin class of frog toxins. Our preliminary results 
presented in this communication. 

corres- 2-cyano A3 piperideine 5 (a 3:2 mixture of epimers) was prepared from the 
ponding pyridinium salt according-to our procedure*. A single product 6l" (Y = 85 X) was 
obtained on selective hydrogenation (Pd/C, H2, EtOH) of the A38 4 double bond of 5g. 
Preparation of the anion of 5 (LDA, THF, - 30') and its reaction with 5-chloro-2-pentanone 
ethylene ketal at room temperature led to the formation of 711 (Y = 55 X). Subsequent 
liberation of the ketone functionality (HCl/MeOH, rt, Y =%-98 W) gave the desired enamine 
equivalent a 'l . 

are 

VI 

111 1 
f 

+ 
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Reagents : I, H2, 
III 

C/Pd 10 %, EtOH, 12h ; II, LDA, THF, - 30°, Cl(CH2)3 C-CH3, rt, 1.5h ; 

Ih 
: MeOH-HCl N (50:50), rt, lh ; IV : A1203 act.II-III, OL$ CH C12, rt, 
; V : NaBH4, CH30H, rt, 20h or NaBH3$N, THF - H+pH4, rt, 2h ; VI, 

- 78', lh ; VII, Hz, C/Pd 10 %, MeOH, H , 12 h. 
NH3 Na, f THF, 

SCHEME 2 

An efficient method for the cyclization of 8 was discovered when the crude product 
mixture from the ketal hydrolysis was column chromatographed on alumina" . On contact of 8 
with alumina (Merck, Art. 1097) elimination of CN-, cyclization, dehydration and, finally, 
1,4-reintroduction of CN- onto the resultant conjugated iminium 15 occurred successively, 
giving the cyan0 enamine 9 l3 as a mixture of two epimers (9 : IT-in > 75 % yield (scheme3). 
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Scheme 3 -~Lz 

The major isomer, isolated pure after further chromatography was used in all sub- 
sequent experiments. The gross structure of this compound was deduced from the spectral data. 
However the configuration at C-5 was assigned on the basis of stereoelectronic arguments,ie. 
axial attack of CN- on the conjugated iminium 15 whose C-2 propyl side chain is axial due to 
A'/ ' 

- 
strain. 

The stable cyanoenamine 2 can be considered as a y-aminonitrile equivalent of the 
proposed biogenetic intermediate 4. To complete the synthesis of the cis-decahydroquinoline 
system of 1 from this key intermediate it thus remained to control the-Teduction of the A')" 
enamine double bond and the reductive removal of the cyan0 group (cleavage of the N-benzyl 

group being a trivial operation). 

We first investigated borohydride reduction of the enamine system. Reaction of 9 
with NaBH4 in MeOH led to the formation of two inseparable isomeric products (Y = 97 X) i; 
a 85 : 15 ratio as determined by measuring peak heights in the 13C NMR spectrum. The same 
two products were also obtained using NaBH3CN in THF/HCl at pH 4.0, however the reaction 
was less selective (Y = 75 % : 45155). The subsequent reaction of these mixtures with sodium 

in NH3 liq. at - 78" for lh. produced the two corresponding decyano products in nearly 
quantitativeyieldwithout altering the isomer ratio. Finally, hydrogenolytic cleavage of the 

N-benzyl group (PdlC, H MeOH-HCl) then gave the two decahydroquinolines 11 and 12 which 

were readily separated 2; preparative layer chromatography on alumina (CH2E2/MeOr2 X) 

(Y = 85 %)I': 

TLC and GC (20 % SE-30, 3 m, 185'/2 atm., Np) comparison of products 11 and 12 

with an authentic sample of pumiliotoxin-C showed that they were isomeric with iF;e natural 
material. 

The major component from NaBH4 reduction of 9 corresponds to structure 12 where 
the cis fused ring adopts the conformation B so as to piace both side chains in equatorial 
posif&s. The cis nature of the ring junction was deduced from the characteristic position --- 
fortheH-2 (62.69) and H-9 (62.84) signals in the 'H NMR spectrum15, and from the large 

J9 8ax = 12 Hz coupling constant. The large coupling constant J5,6ax = 12 Hz was consistent 
with an equatorial orientation of the C-5 methyl group aswerethe 13C NMR signals for an 
equatorial orientation of the C-2 propyl side chain. 

The assignment of the trans diequatorial structure of 11 to the minor component 
was based upon the comparison of 1ts --7-- 13C NMR spectrum with publzhed valuesm . 

It is important to note that the relative configurations of the methyl and propyl 
side chains of 11 and 12 are different. This we believe is a result of an isomerization of 
the C-5 center bring zcyanation of the intermediate leading to 11 (to be discussed in more 
detail later). 

- 

In a different approach, the cyclized cyanoenamine 9 was treated directly with 
Na/NH3 liq. (lh, -78'). Vinylogous B-elimination of the benzylgroup and reduction of the 
resultant conjugated imine 4 occurred on reductive decyanation leading in a single operation 
to the trans product 11 in high yield ( >, 75 X). Also catalytic hydrogenation of the A"" -____ 
double bond of 2 was studied. At atmospheric pressure (Pd/C, Ru/A1203) catalysts) the steri- 
tally crowded double bond was unreactive, and at higher pressures concomitant reduction of 
the nitrile group was observed. 

In summary, the conversion of 8 to the cyclized aminonitrile 9 catalyzed bycontact 
with alumina mimics very effectively the proposed biosynthetic transformation of enamine 3 
to the conjugated imine 4. This key intermediate was in a short and high yielding fashion, 
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converted stereospecifically to the trans decahydroquinoline 11 (as yet found in but a few 
natural products), and stereoselecti;eiy-(85 : 15) to the ciscompound 12 possessing both 

-T- 
the correct ring conformation and C-2 side chain configuration of gephyrzoxin 2. 
Pumiliotoxin-C 1 was not obtained using the methods studied for reduction of 9.-However, 
these results ~711 serve as a guideline to further and hopefully successful experimentation 
towards this natural system. 
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